

4430 E. Miraloma Ave. Suite D Anaheim, California 92807

CSL04566
AT&T LAND LINE SWITCH
202 W. Ojai Ave.
Ojai, CA 93023

Prepared for
Smartlink

STRUCTURAL CALCULATIONS
Equipment Support

By

3842 Hendrix Street
Irvine, CA 92614

Sasan Moberd, P.E. 75884

May 19, 2021

Design Criteria

I. Code

**California Building Code, 2019 Edition.
ASCE7-16 Minimum Design Loads for Buildings & other structures**

II. Scope of Work

- 1. Install (1) new DELTA "Walk up cabinet" with the maximum weight of 6000 lbs on new steel platform on roof.**
- 2. Install new anchor bolts for proposed screen (screen by others).**

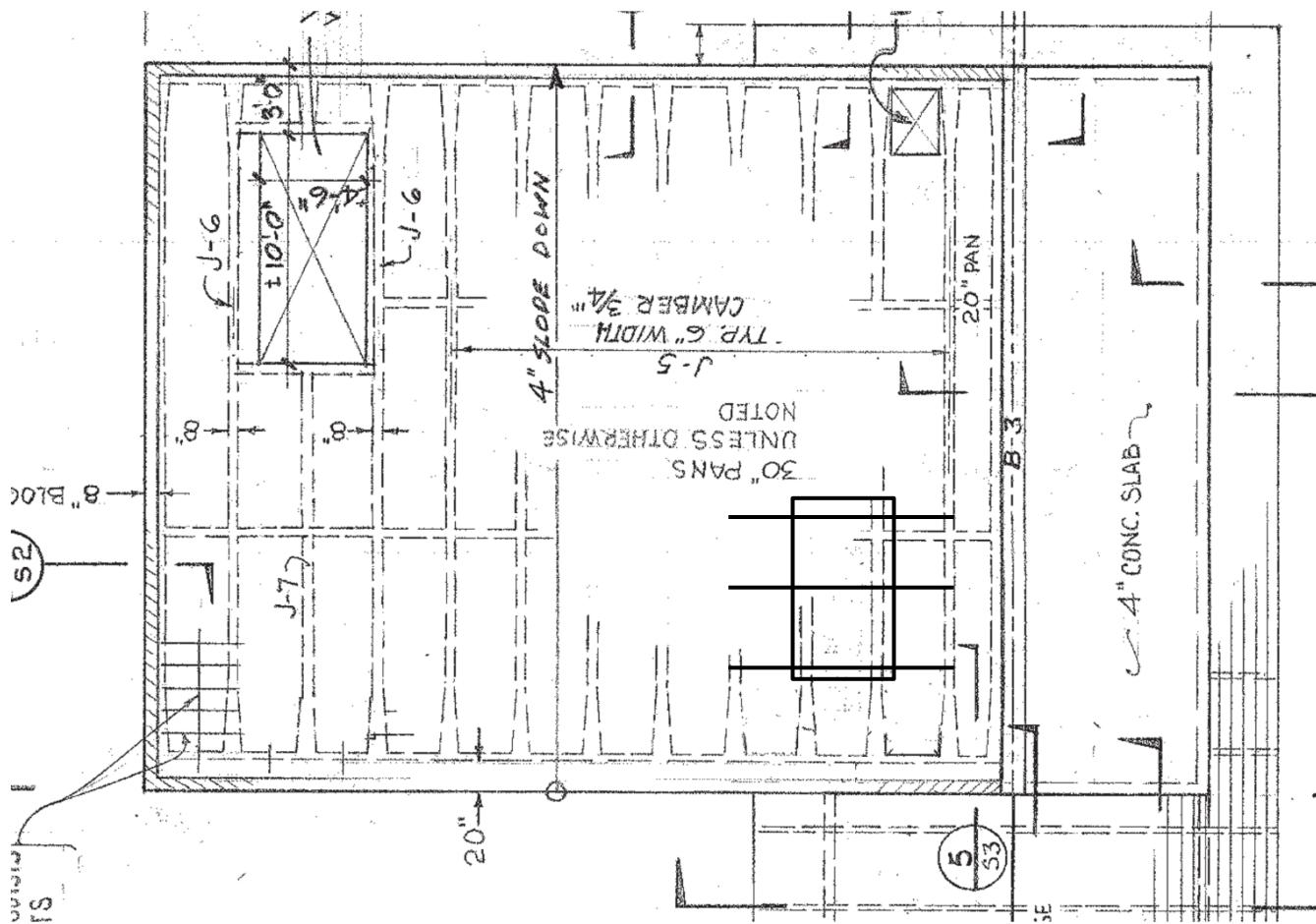
III. Citation

The following documents were provided to Nick Engineering for the purpose of generating this report. It is assumed that this information is accurate and correct. Nick Engineering shall not be responsible for information/calculations prepared by others or for errors in our design as a result of inaccurate information provided to us.

- 1. Structural as-built drawings provided by Stanley H Mendes, dated 06/15/73.**

Provisions of Analysis & Disclaimer:

The analysis and conclusions contained in this report are based on information provided by AT&T. Construction not performed in accordance with the provisions contained herein will void this report. Nick Engineering declines any responsibility for damages that originated prior to the proposed modifications/additions or for the accuracy of design/calculations done by others or for variations in the design and field conditions. Discrepancies between field conditions and this report should be immediately brought to the attention of Nick Engineering for review.


NOTE:

1. THE GENERAL CONTRACTOR SHALL VERIFY ALL EXISTING CONDITIONS AT THE JOB SITE. ANY DISCREPANCIES SHALL BE RESOLVED WITH ARCH/ENGINEER PRIOR TO START OF CONSTRUCTION.
2. THE GENERAL CONTRACTOR SHALL VERIFY THE EXACT LOCATION OF THE EXISTING CONCRETE JOISTS AND THE EXISTING REINFORCEMENTS PRIOR TO START OF CONSTRUCTION.
3. DO NOT CUT OR DAMAGE ANY (E) REINFORCEMENT WHILE DRILLING FOR NEW ANCHORS.

EQUIPMENT SUPPORT FRAMING PLAN

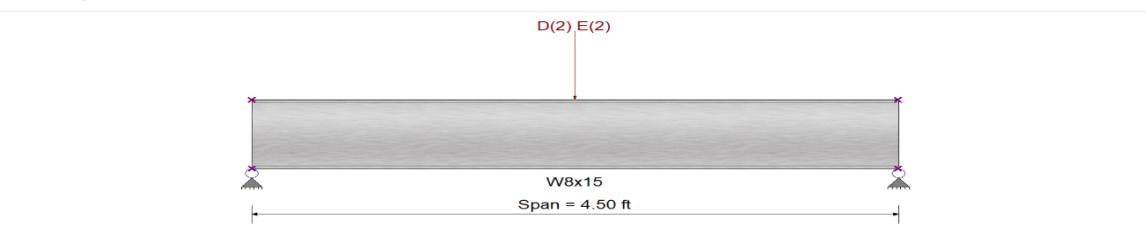
SCALE:
3/8"=1'-0" **1**

EXISTING ROOF FRAMING PLAN (AS-BUILT)

Steel Beam

Lic. #: KW-06013139

File: CALC.ec6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24
Nick Engineering Inc.**DESCRIPTION: DESIGN OF NEW STEEL BEAM****CODE REFERENCES**Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : ASCE 7-16**Material Properties**


Analysis Method : Allowable Strength Design

Fy : Steel Yield : 36.0 ksi

Beam Bracing : Completely Unbraced

E: Modulus : 29,000.0 ksi

Bending Axis : Major Axis Bending

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added
Load(s) for Span Number 1

Point Load : D = 2.0, E = 2.0 k @ 2.250 ft, (WIC)

DESIGN SUMMARY

Maximum Bending Stress Ratio =

0.157 : 1

Maximum Shear Stress Ratio =

Design OK

0.059 : 1

Section used for this span

W8x15

Ma : Applied

W8x15

Mn / Omega : Allowable

3.825 k-ft

1.70 k

24.431 k-ft

28.612 k

Load Combination

+D+0.70E

+D+0.70E

Location of maximum on span

2.250ft

0.000 ft

Span # where maximum occurs

Span # 1

Span # 1

Maximum Deflection

Max Downward Transient Deflection

0.005 in Ratio = 11,407 >=360

Design OK

Max Upward Transient Deflection

0.000 in Ratio = 0 <360

0.059 : 1

Max Downward Total Deflection

0.008 in Ratio = 6711 >=180

W8x15

Max Upward Total Deflection

0.000 in Ratio = 0 <180

1.70 k

Maximum Forces & Stresses for Load Combinations

Load Combination	Segment Length	Span #	Max Stress Ratios		Summary of Moment Values						Summary of Shear Values			
			M	V	Mmax +	Mmax -	Ma Max	Mnx	Mnx/Omega	Cb	Rm	Va Max	Vnx	Vnx/Omega
D Only	Dsgn. L = 4.50 ft	1	0.092	0.035	2.25		2.25	40.80	24.43	1.32	1.00	1.00	42.92	28.61
+0.60D	Dsgn. L = 4.50 ft	1	0.055	0.021	1.35		1.35	40.80	24.43	1.32	1.00	0.60	42.92	28.61
+D+0.70E	Dsgn. L = 4.50 ft	1	0.157	0.059	3.82		3.82	40.80	24.43	1.32	1.00	1.70	42.92	28.61
+D+0.5250E	Dsgn. L = 4.50 ft	1	0.140	0.053	3.43		3.43	40.80	24.43	1.32	1.00	1.53	42.92	28.61
+0.60D+0.70E	Dsgn. L = 4.50 ft	1	0.120	0.045	2.92		2.92	40.80	24.43	1.32	1.00	1.30	42.92	28.61

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
+D+0.70E	1	0.0080	2.250		0.0000	0.000

Vertical Reactions

Load Combination	Support 1	Support 2	Support notation : Far left is #1		Values in KIPS	
Overall MAXimum	1.700	1.700				
Overall MINimum	0.600	0.600				
D Only	1.000	1.000				
+0.60D	0.600	0.600				
+D+0.70E	1.700	1.700				

Steel Beam

Lic. #: KW-06013139

File: CALC.ec6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24
Nick Engineering Inc.

DESCRIPTION: DESIGN OF NEW STEEL BEAM

Vertical Reactions

Load Combination	Support 1	Support 2	Support notation : Far left is #1	Values in KIPS		
+D+0.5250E	1.525	1.525				
+0.60D+0.70E	1.300	1.300				
E Only	1.000	1.000				

Steel Section Properties : W8x15

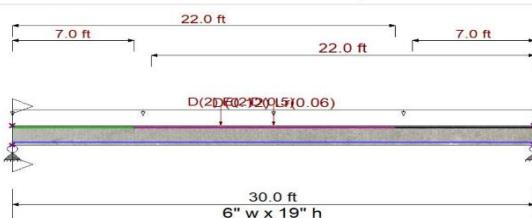
Depth	=	8.110 in	I _{xx}	≡	48.00 in ⁴	J	=	0.137 in ⁴
Web Thick	=	0.245 in	S _{xx}	=	11.80 in ³	C _w	=	51.80 in ⁶
Flange Width	=	4.015 in	R _{xx}	=	3.290 in			
Flange Thick	=	0.315 in	Z _x	=	13.600 in ³			
Area	=	4.440 in ²	I _{yy}	=	3.410 in ⁴			
Weight	=	15.000 plf	S _{yy}	=	1.700 in ³	W _{ho}	=	7.010 in ²
Kdesign	=	0.615 in	R _{yy}	=	0.876 in	S _w	=	2.470 in ⁴
K1	=	0.563 in	Z _y	=	2.670 in ³	Q _f	=	2.310 in ³
r _{ts}	=	1.060 in				Q _w	=	6.640 in ³
Y _{cg}	=	4.055 in						

Concrete Beam

Lic. # : KW-06013139

File: CALC.ec6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24
Nick Engineering Inc.

DESCRIPTION: CHECK (E) CONC. ROOF JOISTS (RECTANGULAR)



CODE REFERENCES

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set : ASCE 7-16

Material Properties

f'_c	=	3.0 ksi	ϕ	Phi Values	Flexure :	0.90
$fr = f'_c^{1/2} * 7.50$	=	410.792 psi			Shear :	0.750
ψ Density	=	145.0 pcf	β_1	=		0.850
λ LtWt Factor	=	1.0				
Elastic Modulus	=	3,122.0 ksi	Fy - Stirrups			40.0 ksi
fy - Main Rebar	=	60.0 ksi	E - Stirrups	=		29,000.0 ksi
E - Main Rebar	=	29,000.0 ksi	Stirrup Bar Size #			3
			Number of Resisting Legs Per Stirrup			2

Cross Section & Reinforcing Details

Rectangular Section, Width = 6.0 in, Height = 19.0 in

Span #1 Reinforcing....

2-#9 at 3.0 in from Bottom, from 0.0 to 30.0 ft in this span
1-#5 at 2.0 in from Top, from 7.0 to 23.0 ft in this span

2-#6 at 2.0 in from Top, from 0.0 to 8.0 ft in this span
2-#6 at 2.0 in from Top, from 22.0 to 30.0 ft in this span

Beam self weight calculated and added to loads

Load for Span Number 1

Uniform Load : $D = 0.040$, $L_r = 0.020$ ksf, Tributary Width = 3.0 ft, (ROOF)

Point Load : $D = 2.0$, $E = 2.0$ k @ 12.0 ft, (WIC)

Point Load : $D = 0.50$ k @ 15.0 ft, ((E) AC)

DESIGN SUMMARY

Maximum Bending Stress Ratio	0.568 : 1	Typical Section	Maximum Deflection	Design OK
Section used for this span			Max Downward Transient Deflection	0.178 in Ratio = 2021 >=360.
M_u : Applied	65.696 k-ft		Max Upward Transient Deflection	0.000 in Ratio = 0 <360.0
$M_n * \Phi_i$: Allowable	115.733 k-ft		Max Downward Total Deflection	1.100 in Ratio = 327 >=180.
Location of maximum on span	12.022 ft		Max Upward Total Deflection	0.000 in Ratio = 0 <180.0
Span # where maximum occurs	Span # 1			

Vertical Reactions

Load Combination	Support 1	Support 2	Support notation : Far left is #1
Overall MAXimum	5.872	5.472	
Overall MINimum	0.900	0.800	
+D+H	4.972	4.572	
+D+L+H	4.972	4.572	
+D+Lr+H	5.872	5.472	
+D+S+H	4.972	4.572	
+D+0.750Lr+0.750L+H	5.647	5.247	
+D+0.750L+0.750S+H	4.972	4.572	
+D+0.60W+H	4.972	4.572	

Concrete Beam

Lic. # : KW-06013139

File: CALC.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24

Nick Engineering Inc.

DESCRIPTION: CHECK (E) CONC. ROOF JOISTS (RECTANGULAR)

Vertical Reactions

Load Combination	Support 1	Support 2	Support notation : Far left is #1
+D+0.750L+0.750L+0.450W+H	5.647	5.247	
+D+0.750L+0.750S+0.450W+H	4.972	4.572	
+0.60D+0.60W+0.60H	2.983	2.743	
+D+0.70E+0.60H	5.812	5.132	
+D+0.750L+0.750S+0.5250E+H	5.602	4.992	
+0.60D+0.70E+H	3.823	3.303	
D Only	4.972	4.572	
Lr Only	0.900	0.900	
E Only	1.200	0.800	
H Only			

Detailed Shear Information

Load Combination	Span Number	Distance (ft)	'd' (in)	Vu (k) Actual	Vu (k) Design	Mu (k-ft)	d*Vu/Mu	Phi*Vc (k)	Comment	Phi*Vs (k)	Phi*Vn (k)	Spacing (in) Req'd Suggest
+1.20D+1.60Lr+0.50W+1.60H	1	0.00	16.00	7.41	7.41	0.00	1.00	11.24	Phi*Vc/2 < Vu <= Min 9.6.3.1	24.4	8.0	8.0
+1.20D+1.60Lr+0.50W+1.60H	1	0.33	16.00	7.28	7.28	2.41	1.00	11.24	Phi*Vc/2 < Vu <= Min 9.6.3.1	24.4	8.0	8.0
+1.20D+1.60Lr+0.50W+1.60H	1	0.66	16.00	7.16	7.16	4.78	1.00	11.24	Phi*Vc/2 < Vu <= Min 9.6.3.1	24.4	8.0	8.0
+1.20D+1.60Lr+0.50W+1.60H	1	0.98	16.00	7.03	7.03	7.10	1.00	11.24	Phi*Vc/2 < Vu <= Min 9.6.3.1	24.4	8.0	8.0
+1.20D+1.60Lr+0.50W+1.60H	1	1.31	16.00	6.91	6.91	9.39	0.98	11.17	Phi*Vc/2 < Vu <= Min 9.6.3.1	24.4	8.0	8.0
+1.20D+1.60Lr+0.50W+1.60H	1	1.64	16.00	6.79	6.79	11.63	0.78	10.41	Phi*Vc/2 < Vu <= Min 9.6.3.1	23.6	8.0	8.0
+1.20D+1.60Lr+0.50W+1.60H	1	1.97	16.00	6.66	6.66	13.84	0.64	9.90	Phi*Vc/2 < Vu <= Min 9.6.3.1	23.1	8.0	8.0
+1.20D+1.60Lr+0.50W+1.60H	1	2.30	16.00	6.54	6.54	16.00	0.54	9.54	Phi*Vc/2 < Vu <= Min 9.6.3.1	22.7	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	2.62	16.00	6.43	6.43	17.83	0.48	9.30	Phi*Vc/2 < Vu <= Min 9.6.3.1	22.5	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	2.95	16.00	6.33	6.33	19.92	0.42	9.08	Phi*Vc/2 < Vu <= Min 9.6.3.1	22.3	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	3.28	16.00	6.24	6.24	21.98	0.38	8.91	Phi*Vc/2 < Vu <= Min 9.6.3.1	22.1	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	3.61	16.00	6.15	6.15	24.01	0.34	8.77	Phi*Vc/2 < Vu <= Min 9.6.3.1	22.0	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	3.93	16.00	6.06	6.06	26.01	0.31	8.66	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.9	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	4.26	16.00	5.97	5.97	27.99	0.28	8.56	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.8	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	4.59	16.00	5.87	5.87	29.93	0.26	8.47	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.7	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	4.92	16.00	5.78	5.78	31.84	0.24	8.40	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.6	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	5.25	16.00	5.69	5.69	33.72	0.22	8.34	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.5	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	5.57	16.00	5.60	5.60	35.57	0.21	8.28	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.5	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	5.90	16.00	5.50	5.50	37.39	0.20	8.23	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.4	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	6.23	16.00	5.41	5.41	39.18	0.18	8.18	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.4	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	6.56	16.00	5.32	5.32	40.93	0.17	8.14	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.3	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	6.89	16.00	5.23	5.23	42.66	0.16	8.11	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.3	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	7.21	16.00	5.13	5.13	44.36	0.15	8.07	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.3	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	7.54	16.00	5.04	5.04	46.03	0.15	8.04	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.2	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	7.87	16.00	4.95	4.95	47.67	0.14	8.01	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.2	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	8.20	16.00	4.86	4.86	49.27	0.13	7.99	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.2	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	8.52	16.00	4.76	4.76	50.85	0.12	7.96	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.2	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	8.85	16.00	4.67	4.67	52.40	0.12	7.94	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.1	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	9.18	16.00	4.58	4.58	53.92	0.11	7.92	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.1	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	9.51	16.00	4.49	4.49	55.40	0.11	7.90	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.1	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	9.84	16.00	4.39	4.39	56.86	0.10	7.88	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.1	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	10.16	16.00	4.30	4.30	58.28	0.10	7.86	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.1	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	10.49	16.00	4.21	4.21	59.68	0.09	7.85	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.0	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	10.82	16.00	4.12	4.12	61.04	0.09	7.83	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.0	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	11.15	16.00	4.03	4.03	62.38	0.09	7.82	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.0	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	11.48	16.00	3.93	3.93	63.68	0.08	7.80	Phi*Vc/2 < Vu <= Min 9.6.3.1	21.0	8.0	8.0
+1.20D+L+0.20S+E+1.60H	1	11.80	16.00	3.84	3.84	64.96	0.08	7.79	Vu < Phi*Vc/2	lot Req'd 9.6.	7.8	0.0 0.0
+0.90D+E+0.90H	1	12.13	16.00	-0.69	0.69	52.79	0.02	7.56	Vu < Phi*Vc/2	lot Req'd 9.6.	7.6	0.0 0.0
+0.90D+E+0.90H	1	12.46	16.00	-0.76	0.76	52.56	0.02	7.56	Vu < Phi*Vc/2	lot Req'd 9.6.	7.6	0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	12.79	16.00	-0.84	0.84	65.14	0.02	7.56	Vu < Phi*Vc/2	lot Req'd 9.6.	7.6	0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	13.11	16.00	-0.93	0.93	64.85	0.02	7.56	Vu < Phi*Vc/2	lot Req'd 9.6.	7.6	0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	13.44	16.00	-1.02	1.02	64.53	0.02	7.57	Vu < Phi*Vc/2	lot Req'd 9.6.	7.6	0.0 0.0

Concrete Beam

Lic. # : KW-06013139

File: CALC.ec6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24
Nick Engineering Inc.**DESCRIPTION:** CHECK (E) CONC. ROOF JOISTS (RECTANGULAR)**Detailed Shear Information**

Load Combination	Span Number	Distance (ft)	'd" (in)	Vu (k)	Mu (k-ft)	d*Vu/Mu	Phi*Vc (k)	Comment	Phi*Vs (k)	Phi*Vn (k)	Spacing (in) Req'd Suggest
+1.20D+L+0.20S+E+1.60H	1	13.77	16.00	-1.11	1.11	64.18	0.02	7.58	Vu < Phi*Vc/2	lot Reqd 9.6.	7.6 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	14.10	16.00	-1.21	1.21	63.80	0.03	7.59	Vu < Phi*Vc/2	lot Reqd 9.6.	7.6 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	14.43	16.00	-1.30	1.30	63.39	0.03	7.60	Vu < Phi*Vc/2	lot Reqd 9.6.	7.6 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	14.75	16.00	-1.39	1.39	62.95	0.03	7.60	Vu < Phi*Vc/2	lot Reqd 9.6.	7.6 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	15.08	16.00	-2.08	2.08	62.43	0.04	7.66	Vu < Phi*Vc/2	lot Reqd 9.6.	7.7 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	15.41	16.00	-2.18	2.18	61.73	0.05	7.67	Vu < Phi*Vc/2	lot Reqd 9.6.	7.7 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	15.74	16.00	-2.27	2.27	61.00	0.05	7.68	Vu < Phi*Vc/2	lot Reqd 9.6.	7.7 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	16.07	16.00	-2.36	2.36	60.24	0.05	7.69	Vu < Phi*Vc/2	lot Reqd 9.6.	7.7 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	16.39	16.00	-2.45	2.45	59.45	0.06	7.70	Vu < Phi*Vc/2	lot Reqd 9.6.	7.7 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	16.72	16.00	-2.54	2.54	58.63	0.06	7.71	Vu < Phi*Vc/2	lot Reqd 9.6.	7.7 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	17.05	16.00	-2.64	2.64	57.78	0.06	7.72	Vu < Phi*Vc/2	lot Reqd 9.6.	7.7 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	17.38	16.00	-2.73	2.73	56.90	0.06	7.73	Vu < Phi*Vc/2	lot Reqd 9.6.	7.7 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	17.70	16.00	-2.82	2.82	55.99	0.07	7.74	Vu < Phi*Vc/2	lot Reqd 9.6.	7.7 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	18.03	16.00	-2.91	2.91	55.05	0.07	7.76	Vu < Phi*Vc/2	lot Reqd 9.6.	7.8 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	18.36	16.00	-3.01	3.01	54.08	0.07	7.77	Vu < Phi*Vc/2	lot Reqd 9.6.	7.8 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	18.69	16.00	-3.10	3.10	53.08	0.08	7.78	Vu < Phi*Vc/2	lot Reqd 9.6.	7.8 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	19.02	16.00	-3.19	3.19	52.05	0.08	7.80	Vu < Phi*Vc/2	lot Reqd 9.6.	7.8 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	19.34	16.00	-3.28	3.28	50.99	0.09	7.81	Vu < Phi*Vc/2	lot Reqd 9.6.	7.8 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	19.67	16.00	-3.38	3.38	49.90	0.09	7.83	Vu < Phi*Vc/2	lot Reqd 9.6.	7.8 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	20.00	16.00	-3.47	3.47	48.77	0.09	7.85	Vu < Phi*Vc/2	lot Reqd 9.6.	7.8 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	20.33	16.00	-3.56	3.56	47.62	0.10	7.87	Vu < Phi*Vc/2	lot Reqd 9.6.	7.9 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	20.66	16.00	-3.65	3.65	46.44	0.10	7.89	Vu < Phi*Vc/2	lot Reqd 9.6.	7.9 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	20.98	16.00	-3.75	3.75	45.23	0.11	7.91	Vu < Phi*Vc/2	lot Reqd 9.6.	7.9 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	21.31	16.00	-3.84	3.84	43.98	0.12	7.93	Vu < Phi*Vc/2	lot Reqd 9.6.	7.9 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	21.64	16.00	-3.93	3.93	42.71	0.12	7.95	Vu < Phi*Vc/2	lot Reqd 9.6.	8.0 0.0 0.0
+1.20D+L+0.20S+E+1.60H	1	21.97	16.00	-4.02	4.02	41.41	0.13	7.98	Phi*Vc/2 < Vu <=	Min 9.6.3.1	21.2 8.0 8.0
+1.20D+L+0.20S+E+1.60H	1	22.30	16.00	-4.12	4.12	40.07	0.14	8.01	Phi*Vc/2 < Vu <=	Min 9.6.3.1	21.2 8.0 8.0
+1.20D+L+0.20S+E+1.60H	1	22.62	16.00	-4.21	4.21	38.71	0.14	8.04	Phi*Vc/2 < Vu <=	Min 9.6.3.1	21.2 8.0 8.0
+1.20D+L+0.20S+E+1.60H	1	22.95	16.00	-4.30	4.30	37.31	0.15	8.07	Phi*Vc/2 < Vu <=	Min 9.6.3.1	21.3 8.0 8.0
+1.20D+L+0.20S+E+1.60H	1	23.28	16.00	-4.39	4.39	35.89	0.16	8.10	Phi*Vc/2 < Vu <=	Min 9.6.3.1	21.3 8.0 8.0
+1.20D+1.60Lr+0.50W+1.60H	1	23.61	16.00	-4.51	4.51	36.56	0.16	8.11	Phi*Vc/2 < Vu <=	Min 9.6.3.1	21.3 8.0 8.0
+1.20D+1.60Lr+0.50W+1.60H	1	23.93	16.00	-4.63	4.63	35.06	0.18	8.15	Phi*Vc/2 < Vu <=	Min 9.6.3.1	21.4 8.0 8.0
+1.20D+1.60Lr+0.50W+1.60H	1	24.26	16.00	-4.76	4.76	33.52	0.19	8.20	Phi*Vc/2 < Vu <=	Min 9.6.3.1	21.4 8.0 8.0
+1.20D+1.60Lr+0.50W+1.60H	1	24.59	16.00	-4.88	4.88	31.94	0.20	8.26	Phi*Vc/2 < Vu <=	Min 9.6.3.1	21.5 8.0 8.0
+1.20D+1.60Lr+0.50W+1.60H	1	24.92	16.00	-5.01	5.01	30.32	0.22	8.32	Phi*Vc/2 < Vu <=	Min 9.6.3.1	21.5 8.0 8.0
+1.20D+1.60Lr+0.50W+1.60H	1	25.25	16.00	-5.13	5.13	28.66	0.24	8.39	Phi*Vc/2 < Vu <=	Min 9.6.3.1	21.6 8.0 8.0
+1.20D+1.60Lr+0.50W+1.60H	1	25.57	16.00	-5.25	5.25	26.96	0.26	8.47	Phi*Vc/2 < Vu <=	Min 9.6.3.1	21.7 8.0 8.0
+1.20D+1.60Lr+0.50W+1.60H	1	25.90	16.00	-5.38	5.38	25.21	0.28	8.56	Phi*Vc/2 < Vu <=	Min 9.6.3.1	21.8 8.0 8.0
+1.20D+1.60Lr+0.50W+1.60H	1	26.23	16.00	-5.50	5.50	23.43	0.31	8.67	Phi*Vc/2 < Vu <=	Min 9.6.3.1	21.9 8.0 8.0
+1.20D+1.60Lr+0.50W+1.60H	1	26.56	16.00	-5.63	5.63	21.61	0.35	8.79	Phi*Vc/2 < Vu <=	Min 9.6.3.1	22.0 8.0 8.0
+1.20D+1.60Lr+0.50W+1.60H	1	26.89	16.00	-5.75	5.75	19.74	0.39	8.95	Phi*Vc/2 < Vu <=	Min 9.6.3.1	22.1 8.0 8.0
+1.20D+1.60Lr+0.50W+1.60H	1	27.21	16.00	-5.87	5.87	17.84	0.44	9.14	Phi*Vc/2 < Vu <=	Min 9.6.3.1	22.3 8.0 8.0
+1.20D+1.60Lr+0.50W+1.60H	1	27.54	16.00	-6.00	6.00	15.89	0.50	9.38	Phi*Vc/2 < Vu <=	Min 9.6.3.1	22.6 8.0 8.0
+1.20D+1.60Lr+0.50W+1.60H	1	27.87	16.00	-6.12	6.12	13.90	0.59	9.69	Phi*Vc/2 < Vu <=	Min 9.6.3.1	22.9 8.0 8.0
+1.20D+1.60Lr+0.50W+1.60H	1	28.20	16.00	-6.25	6.25	11.88	0.70	10.12	Phi*Vc/2 < Vu <=	Min 9.6.3.1	23.3 8.0 8.0
+1.20D+1.60Lr+0.50W+1.60H	1	28.52	16.00	-6.37	6.37	9.81	0.87	10.74	Phi*Vc/2 < Vu <=	Min 9.6.3.1	23.9 8.0 8.0
+1.20D+1.60Lr+0.50W+1.60H	1	28.85	16.00	-6.49	6.49	7.70	1.00	11.24	Phi*Vc/2 < Vu <=	Min 9.6.3.1	24.4 8.0 8.0
+1.20D+1.60Lr+0.50W+1.60H	1	29.18	16.00	-6.62	6.62	5.55	1.00	11.24	Phi*Vc/2 < Vu <=	Min 9.6.3.1	24.4 8.0 8.0
+1.20D+1.60Lr+0.50W+1.60H	1	29.51	16.00	-6.74	6.74	3.36	1.00	11.24	Phi*Vc/2 < Vu <=	Min 9.6.3.1	24.4 8.0 8.0
+1.20D+1.60Lr+0.50W+1.60H	1	29.84	16.00	-6.86	6.86	1.13	1.00	11.24	Phi*Vc/2 < Vu <=	Min 9.6.3.1	24.4 8.0 8.0

Maximum Forces & Stresses for Load Combinations

Load Combination	Span #	Location (ft)	Bending Stress Results (k-ft)		
Segment	Span #	along Beam	Mu : Max	Phi*Mnx	Stress Ratio
MAXimum BENDING Envelope					

Concrete Beam

Lic. # : KW-06013139

File: CALC.ec6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24
Nick Engineering Inc.

DESCRIPTION: CHECK (E) CONC. ROOF JOISTS (RECTANGULAR)

Load Combination Segment	Span #	Location (ft) along Beam	Bending Stress Results (k-ft)		
			Mu : Max	Phi'Mnx	Stress Ratio
Span # 1 +1.40D+1.60H	1	30.000	65.70	115.73	0.57
Span # 1 +1.20D+0.50Lr+1.60L+1.60H	1	30.000	59.93	115.73	0.52
Span # 1 +1.20D+1.60L+0.50S+1.60H	1	30.000	54.67	115.73	0.47
Span # 1 +1.20D+1.60L+L+1.60H	1	30.000	51.37	115.73	0.44
Span # 1 +1.20D+1.60Lr+0.50W+1.60H	1	30.000	61.97	115.73	0.54
Span # 1 +1.20D+L+1.60S+1.60H	1	30.000	61.97	115.73	0.54
Span # 1 +1.20D+1.60S+0.50W+1.60H	1	30.000	51.37	115.73	0.44
Span # 1 +1.20D+0.50Lr+L+W+1.60H	1	30.000	51.37	115.73	0.44
Span # 1 +1.20D+L+0.50S+W+1.60H	1	30.000	54.67	115.73	0.47
Span # 1 +0.90D+W+1.60H	1	30.000	51.37	115.73	0.44
Span # 1 +1.20D+L+0.20S+E+1.60H	1	30.000	38.53	115.73	0.33
Span # 1 +0.90D+E+0.90H	1	30.000	65.70	115.73	0.57
Span # 1	1	30.000	52.87	115.73	0.46

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl (in)	Location in Span (ft)	Load Combination	Max. "+" Defl (in)	Location in Span (ft)
+D+0.70E+0.60H	1	1.0997	14.508		0.0000	0.000

5/19/2021

U.S. Seismic Design Maps

OSHPD

202 W Ojai Ave, Ojai, CA 93023, USA

Latitude, Longitude: 34.4477706, -119.2484033

Date	5/19/2021, 11:23:48 AM
Design Code Reference Document	ASCE7-16
Risk Category	II
Site Class	D - Default (See Section 11.4.3)

Type	Value	Description
S_S	1.841	MCE_R ground motion. (for 0.2 second period)
S_1	0.7	MCE_R ground motion. (for 1.0s period)
S_{MS}	2.209	Site-modified spectral acceleration value
S_{M1}	null -See Section 11.4.8	Site-modified spectral acceleration value
S_{DS}	1.473	Numeric seismic design value at 0.2 second SA
S_{D1}	null -See Section 11.4.8	Numeric seismic design value at 1.0 second SA

Type	Value	Description
SDC	null -See Section 11.4.8	Seismic design category
F_a	1.2	Site amplification factor at 0.2 second
F_v	null -See Section 11.4.8	Site amplification factor at 1.0 second
PGA	0.806	MCE_G peak ground acceleration
F_{PGA}	1.2	Site amplification factor at PGA
PGA_M	0.967	Site modified peak ground acceleration
T_L	8	Long-period transition period in seconds
$SsRT$	1.841	Probabilistic risk-targeted ground motion. (0.2 second)
$SsUH$	2.06	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	2.247	Factored deterministic acceleration value. (0.2 second)
$S1RT$	0.7	Probabilistic risk-targeted ground motion. (1.0 second)
$S1UH$	0.785	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
$S1D$	0.788	Factored deterministic acceleration value. (1.0 second)
PGAd	0.928	Factored deterministic acceleration value. (Peak Ground Acceleration)
C_{RS}	0.893	Mapped value of the risk coefficient at short periods
C_{R1}	0.892	Mapped value of the risk coefficient at a period of 1 s

CABINET ANCHORAGE

Design Code: California Building Code, 2016 Edition

Designing For Total Lateral Force

$$F_p = \frac{0.4 \alpha_p S_{DS} I_p}{R_p} (1+2Z/h) W_p$$

W = 6000 #

SITE CLASS "D"

RISK CATEGORY "II"

$$F_p = \frac{0.4 \times 1.0 \times 1.47 \times 1.0}{3.0} (1 + 2) W_p$$

$$F_p = \boxed{0.59} W_p \quad \boxed{\checkmark} \text{ Governs}$$

$S_{DS} = 1.47$

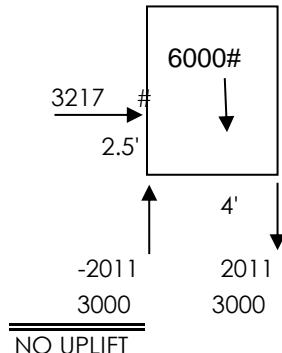
$\alpha_p = 1.0$

$I_p = 1.0$

$R_p = 3.0$

$$F_p \text{ min.} = 0.3 S_{DS} I_p W_p$$

$$\frac{0.3 \times 1.47 \times 1.0 W_p}{0.44 W_p}$$


Use $F_p = \frac{0.7 \times 1.3 \times 0.59}{WS} W_p$

Use $F_p = 0.54 W_p$

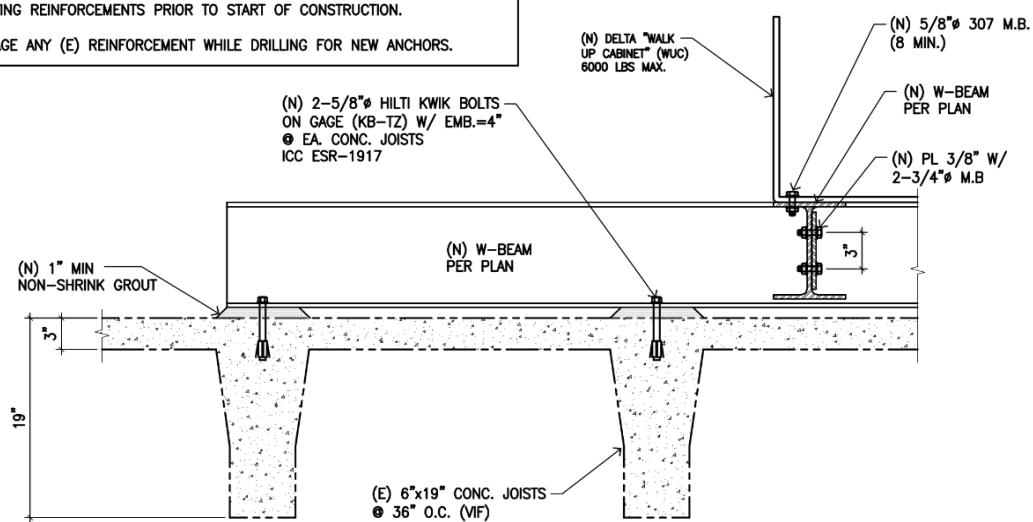
$$V = 0.54 \times W_p$$

$$V = \boxed{3217} \#$$

$$V_{\text{one bolt}} = \frac{3217}{4}$$

$$V_{\text{one bolt}} =$$

$$804 \#$$


$$V_{\text{allow}} = 3100 \#$$

USE

8-5/8" ø A-307 THRU BOLTS

NOTE:

1. THE GENERAL CONTRACTOR SHALL VERIFY ALL EXISTING CONDITIONS AT THE JOB SITE. ANY DISCREPANCIES SHALL BE RESOLVED WITH ARCH/ENGINEER PRIOR TO START OF CONSTRUCTION.
2. THE GENERAL CONTRACTOR SHALL VERIFY THE EXACT LOCATION OF THE EXISTING CONCRETE JOISTS AND THE EXISTING REINFORCEMENTS PRIOR TO START OF CONSTRUCTION.
3. DO NOT CUT OR DAMAGE ANY (E) REINFORCEMENT WHILE DRILLING FOR NEW ANCHORS.

Hilti PROFIS Engineering 3.0.67

www.hilti.com

Company:
Address:
Phone / Fax:
Design:
Fastening point:

Concrete - Feb 19, 2021

Page:
Specifier:
E-Mail:
Date:

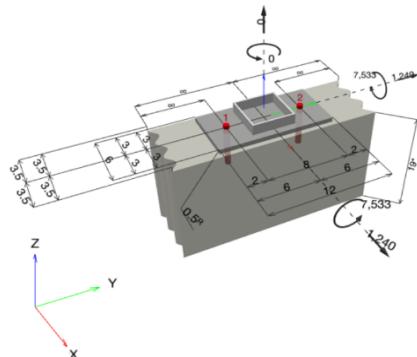
1

2/19/2021

Specifier's comments:

1 Input data

Anchor type and diameter:	Kwik Bolt TZ - CS 5/8 (4)
Item number:	not available
Effective embedment depth:	$h_{ef,act} = 4.000$ in., $h_{nom} = 4.438$ in.
Material:	Carbon Steel
Evaluation Service Report:	ESR-1917
Issued / Valid:	1/1/2020 5/1/2021
Proof:	Design Method ACI 318-14 / Mech
Stand-off installation:	$e_b = 0.000$ in. (no stand-off); $t = 0.500$ in.
Anchor plate ^R :	$l_x \times l_y \times t = 6.000$ in. $\times 12.000$ in. $\times 0.500$ in.; (Recommended plate thickness: not calculated)
Profile:	Square HSS (AISC), HSS4-1/2X4-1/2X.1875; ($L \times W \times T$) = 4.500 in. \times 4.500 in. \times 0.188 in.
Base material:	cracked concrete, 3000, $f_c' = 3,000$ psi; $h = 19.000$ in.
Installation:	hammer drilled hole, Installation condition: Dry
Reinforcement:	tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: > No. 4 bar


Note: the Kwik Bolt TZ - CS anchor is in the process of phase-out.

Application also possible with Kwik Bolt TZ2 - CS under the selected boundary conditions.

Application also possible with Kwik Bolt TZ2 - CS 5/8 (4) hnom3 under the selected boundary conditions.
More information in section Alternative fastening data of this report.

^R - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering (c) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Hilti PROFIS Engineering 3.0.67

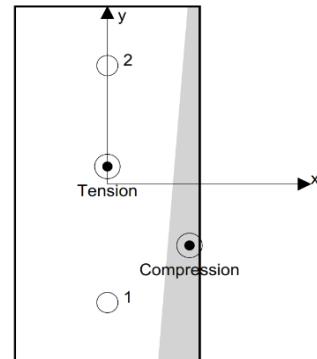
www.hilti.com

Company:	Page:	2
Address:	Specifier:	
Phone / Fax:	E-Mail:	
Design:	Date:	2/19/2021
Fastening point:		

1.1 Design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 0; V_x = 1,240; V_y = 1,240;$ $M_x = 7,533; M_y = 7,533; M_z = 0;$	no	86

2 Load case/Resulting anchor forces


Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	1,203	877	620	620
2	1,623	877	620	620

max. concrete compressive strain: 0.18 [%]
max. concrete compressive stress: 798 [psi]
resulting tension force in (x/y)=(0.000/0.594): 2,826 [lb]
resulting compression force in (x/y)=(2.665/-2.072): 2,826 [lb]

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N_{ua} [lb]	Capacity ϕN_n [lb]	Utilization $\beta_N = N_{ua}/\phi N_n$	Status
Steel Strength*	1,623	12,877	13	OK
Pullout Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	2,826	3,748	76	OK

* highest loaded anchor **anchor group (anchors in tension)

Hilti PROFIS Engineering 3.0.67

www.hilti.com

Company:
Address:
Phone | Fax:
Design:
Fastening point:

Page: 3
Specifier:
E-Mail:
Date:
2/19/2021

Concrete - Feb 19, 2021

3.1 Steel Strength

N_{sa} = ESR value refer to ICC-ES ESR-1917
 $\phi N_{sa} \geq N_{ua}$ ACI 318-14 Table 17.3.1.1

Variables

$A_{se,N}$ [in. ²]	f_{uta} [psi]
0.16	106,000

Calculations

N_{sa} [lb]
17,170

Results

N_{sa} [lb]	ϕ_{steel}	ϕN_{sa} [lb]	N_{ua} [lb]
17,170	0.750	12,877	1,623

Hilti PROFIS Engineering 3.0.67

www.hilti.com

Company:		Page:	4
Address:		Specifier:	
Phone / Fax:		E-Mail:	
Design:	Concrete - Feb 19, 2021	Date:	2/19/2021
Fastening point:			

3.2 Concrete Breakout Failure

$$\begin{aligned}
 N_{cbg} &= \left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_b && \text{ACI 318-14 Eq. (17.4.2.1b)} \\
 \phi N_{cbg} &\geq N_{ua} && \text{ACI 318-14 Table 17.3.1.1} \\
 A_{Nc} &\text{ see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)} \\
 A_{Nc0} &= 9 h_{ef}^2 && \text{ACI 318-14 Eq. (17.4.2.1c)} \\
 \psi_{ec,N} &= \left(\frac{1}{1 + \frac{2 e_N}{3 h_{ef}}} \right) \leq 1.0 && \text{ACI 318-14 Eq. (17.4.2.4)} \\
 \psi_{ed,N} &= 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5 h_{ef}} \right) \leq 1.0 && \text{ACI 318-14 Eq. (17.4.2.5b)} \\
 \psi_{cp,N} &= \text{MAX} \left(\frac{c_{a,min}}{c_{ac}} \frac{1.5 h_{ef}}{c_{ac}} \right) \leq 1.0 && \text{ACI 318-14 Eq. (17.4.2.7b)} \\
 N_b &= k_c \lambda_a \sqrt{f_c} h_{ef}^{1.5} && \text{ACI 318-14 Eq. (17.4.2.2a)}
 \end{aligned}$$

Variables

h_{ef} [in.]	$e_{c1,N}$ [in.]	$e_{c2,N}$ [in.]	$c_{a,min}$ [in.]	$\psi_{c,N}$
4.000	0.000	0.594	3.500	1.000
c_{ac} [in.]	k_c	λ_a	f_c [psi]	
6.750	17	1.000	3,000	

Calculations

A_{Nc} [in. ²]	A_{Nc0} [in. ²]	$\psi_{ec1,N}$	$\psi_{ec2,N}$	$\psi_{ed,N}$	$\psi_{cp,N}$	N_b [lb]
140.00	144.00	1.000	0.910	0.875	1.000	7,449

Results

N_{cbg} [lb]	$\phi_{concrete}$	ϕN_{cbg} [lb]	N_{ua} [lb]
5,766	0.650	3,748	2,826

Hilti PROFIS Engineering 3.0.67

www.hilti.com

Company:		Page:	5
Address:		Specifier:	
Phone / Fax:		E-Mail:	
Design:	Concrete - Feb 19, 2021	Date:	2/19/2021
Fastening point:			

4 Shear load

	Load V_{ua} [lb]	Capacity ϕV_n [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status
Steel Strength*	877	5,259	17	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	1,754	8,872	20	OK
Concrete edge failure in direction x+**	1,754	4,258	42	OK

* highest loaded anchor **anchor group (relevant anchors)

4.1 Steel Strength

V_{sa} = ESR value refer to ICC-ES ESR-1917
 $\phi V_{steel} \geq V_{ua}$ ACI 318-14 Table 17.3.1.1

Variables

$A_{se,V}$ [in. ²]	f_{uta} [psi]
0.16	106,000

Calculations

V_{sa} [lb]
8,091

Results

V_{sa} [lb]	ϕ_{steel}	ϕV_{sa} [lb]	V_{ua} [lb]
8,091	0.650	5,259	877

Hilti PROFIS Engineering 3.0.67

www.hilti.com

Company:
Address:
Phone / Fax:
Design:
Fastening point:

Concrete - Feb 19, 2021

Page: 6
Specifier:
E-Mail:
Date: 2/19/2021

4.2 Pryout Strength

$$\begin{aligned}
 V_{cpq} &= k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_b \right] && \text{ACI 318-14 Eq. (17.5.3.1b)} \\
 \phi V_{cpq} &\geq V_{ua} && \text{ACI 318-14 Table 17.3.1.1} \\
 A_{Nc} &\text{ see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)} \\
 A_{Nc0} &= 9 h_{ef}^2 && \text{ACI 318-14 Eq. (17.4.2.1c)} \\
 \psi_{ec,N} &= \left(\frac{1}{1 + \frac{2 e_N}{3 h_{ef}}} \right) \leq 1.0 && \text{ACI 318-14 Eq. (17.4.2.4)} \\
 \psi_{ed,N} &= 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5 h_{ef}} \right) \leq 1.0 && \text{ACI 318-14 Eq. (17.4.2.5b)} \\
 \psi_{cp,N} &= \text{MAX} \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5 h_{ef}}{c_{ac}} \right) \leq 1.0 && \text{ACI 318-14 Eq. (17.4.2.7b)} \\
 N_b &= k_c \lambda_a \sqrt{f_c} h_{ef}^{1.5} && \text{ACI 318-14 Eq. (17.4.2.2a)}
 \end{aligned}$$

Variables

k_{cp}	h_{ef} [in.]	$e_{c1,N}$ [in.]	$e_{c2,N}$ [in.]	$c_{a,min}$ [in.]
2	4.000	0.000	0.000	3.500
$\psi_{c,N}$	c_{ac} [in.]	k_c	λ_a	f_c [psi]
1.000	6.750	17	1.000	3,000

Calculations

A_{Nc} [in. ²]	A_{Nc0} [in. ²]	$\psi_{ec1,N}$	$\psi_{ec2,N}$	$\psi_{ed,N}$	$\psi_{cp,N}$	N_b [lb]
140.00	144.00	1.000	1.000	0.875	1.000	7,449

Results

V_{cpq} [lb]	$\phi_{concrete}$	ϕV_{cpq} [lb]	V_{ua} [lb]
12,674	0.700	8,872	1,754

Hilti PROFIS Engineering 3.0.67

www.hilti.com

Company:

Page:

7

Address:

Specifier:

Phone / Fax:

E-Mail:

Concrete - Feb 19, 2021

Date:

2/19/2021

Design:
Fastening point:

4.3 Concrete edge failure in direction x+

$$\begin{aligned}
 V_{cbg} &= \left(\frac{A_{vc}}{A_{vc0}} \right) \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_b && \text{ACI 318-14 Eq. (17.5.2.1b)} \\
 \phi V_{cbg} &\geq V_{ua} && \text{ACI 318-14 Table 17.3.1.1} \\
 A_{vc} &\text{ see ACI 318-14, Section 17.5.2.1, Fig. R 17.5.2.1(b)} \\
 A_{vc0} &= 4.5 c_{a1}^2 && \text{ACI 318-14 Eq. (17.5.2.1c)} \\
 \psi_{ec,V} &= \left(\frac{1}{1 + \frac{2e_v}{3c_{a1}}} \right) \leq 1.0 && \text{ACI 318-14 Eq. (17.5.2.5)} \\
 \psi_{ed,V} &= 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) \leq 1.0 && \text{ACI 318-14 Eq. (17.5.2.6b)} \\
 \psi_{h,V} &= \sqrt{\frac{1.5c_{a1}}{h_a}} \geq 1.0 && \text{ACI 318-14 Eq. (17.5.2.8)} \\
 V_b &= \left(7 \left(\frac{l_e}{d_a} \right)^{0.2} \sqrt{d_a} \right) \lambda_a \sqrt{f_c} c_{a1}^{1.5} && \text{ACI 318-14 Eq. (17.5.2.2a)}
 \end{aligned}$$

Variables

c_{a1} [in.]	c_{a2} [in.]	e_{cv} [in.]	$\psi_{c,V}$	h_a [in.]
3.500	-	0.000	1.200	19.000
l_e [in.]	λ_a	d_a [in.]	f_c [psi]	$\psi_{parallel,V}$
4.000	1.000	0.625	3,000	1.000

Calculations

A_{vc} [in. ²]	A_{vc0} [in. ²]	$\psi_{ec,V}$	$\psi_{ed,V}$	$\psi_{h,V}$	V_b [lb]
97.12	55.12	1.000	1.000	1.000	2,877

Results

V_{cbg} [lb]	$\phi_{concrete}$	ϕV_{cbg} [lb]	V_{ua} [lb]
6,083	0.700	4,258	1,754

5 Combined tension and shear loads

β_N	β_V	ζ	Utilization $\beta_{N,V}$ [%]	Status
0.754	0.412	5/3	86	OK

$$\beta_{NV} = \beta_N^\zeta + \beta_V^\zeta \leq 1$$

Hilti PROFIS Engineering 3.0.67

www.hilti.com

Company:		Page:	8
Address:		Specifier:	
Phone / Fax:		E-Mail:	
Design:	Concrete - Feb 19, 2021	Date:	2/19/2021
Fastening point:			

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2018, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to <https://submittals.us.hilti.com/PROFISAnchorDesignGuide/>
- Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-14, Section 17.8.1.

Fastening meets the design criteria!

Hilti PROFIS Engineering 3.0.67

www.hilti.com

Company:

Page:

9

Address:

Specifier:

Phone | Fax:

E-Mail:

Design:

Concrete - Feb 19, 2021

Date:

2/19/2021

Fastening point:

7 Installation data

Profile: Square HSS (AISC), HSS4-1/2X4-1/2X.1875; (L x W x T) = 4.500 in. x 4.500 in. x 0.188 in.

Anchor type and diameter: Kwik Bolt TZ - CS 5/8 (4)

Item number: not available

Hole diameter in the fixture: $d_f = 0.687$ in.

Installation torque: 720 in.lb

Plate thickness (input): 0.500 in.

Hole diameter in the base material: 0.625 in.

Recommended plate thickness: not calculated

Hole depth in the base material: 4.750 in.

Drilling method: Hammer drilled

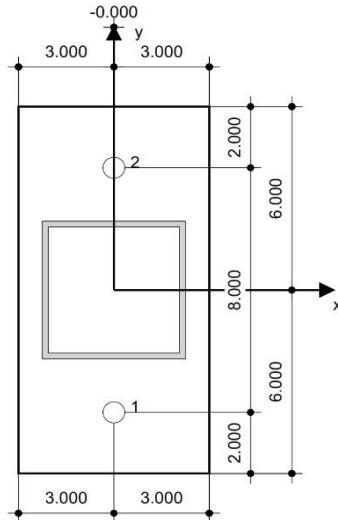
Minimum thickness of the base material: 8.000 in.

Cleaning: Manual cleaning of the drilled hole according to instructions for use is required.

Hilti KB-TZ stud anchor with 4.43752 in embedment, 5/8 (4), Carbon steel, installation per ESR-1917

7.1 Recommended accessories

Drilling


- Suitable Rotary Hammer
- Properly sized drill bit

Cleaning

- Manual blow-out pump

Setting

- Torque controlled cordless impact tool
- Torque wrench
- Hammer

Coordinates Anchor [in.]

Anchor	x	y	c_{-x}	c_{+x}	c_{-y}	c_{+y}
1	0.000	-4.000	3.500	3.500	-	-
2	0.000	4.000	3.500	3.500	-	-

Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering (c) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Hilti PROFIS Engineering 3.0.67

www.hilti.com

Company:
Address:
Phone I Fax:
Design:
Fastening point:

Concrete - Feb 19, 2021

Page:
Specifier:
E-Mail:
Date:

10

2/19/2021

8 Alternative fastening

8.1 Alternative fastening data

Anchor type and diameter:	Kwik Bolt TZ2 - CS 5/8 (4) hnom3
Item number:	2210273 KB-TZ2 5/8x6
Effective embedment depth:	$h_{\text{eff,act}} = 4.000 \text{ in.}, h_{\text{nom}} = 4.500 \text{ in.}$
Material:	Carbon Steel
Evaluation Service Report:	ESR-4266
Issued I Valid:	12/1/2020 12/1/2021
Proof:	Design Method ACI 318-14 / Mech
Stand-off installation:	$e_b = 0.000 \text{ in. (no stand-off)}; t = 0.500 \text{ in.}$
Anchor plate ^R :	$l_x \times l_y \times t = 6.000 \text{ in.} \times 12.000 \text{ in.} \times 0.500 \text{ in.};$ (Recommended plate thickness: not calculated)
Profile:	Square HSS (AISC), HSS4-1/2X4-1/2X.1875; ($L \times W \times T$) = 4.500 in. x 4.500 in. x 0.188 in.
Base material:	cracked concrete, 3000, $f_c' = 3,000 \text{ psi}; h = 19.000 \text{ in.}$
Installation:	hammer drilled hole, Installation condition: Dry
Reinforcement:	tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: > No. 4 bar

SAFE-ET

Max. Utilization with Kwik Bolt TZ2 - CS 5/8 (4) hnom3: 86 % Fastening meets the design criteria!

8.2 Installation data

Profile: Square HSS (AISC), HSS4-1/2X4-1/2X.1875; ($L \times W \times T$) = 4.500 in. x 4.500 in. x 0.188 in.	Anchor type and diameter: Kwik Bolt TZ2 - CS 5/8 (4) hnom3 Item number: 2210273 KB-TZ2 5/8x6
Hole diameter in the fixture: $d_f = 0.687 \text{ in.}$	Installation torque: 481 in.lb
Plate thickness (input): 0.500 in.	Hole diameter in the base material: 0.625 in.
Recommended plate thickness: not calculated	Hole depth in the base material: 4.750 in.
Drilling method: Hammer drilled	Minimum thickness of the base material: 6.000 in.
Cleaning: Manual cleaning of the drilled hole according to instructions for use is required.	

Hilti KB-TZ2 stud anchor with 4.5 in embedment, 5/8 (4) hnom3, Carbon steel, installation per ESR-4266

8.2.1 Recommended accessories

Drilling	Cleaning	Setting
• Suitable Rotary Hammer • Properly sized drill bit	• Manual blow-out pump	• Torque controlled cordless impact tool • Torque wrench • Hammer

Hilti PROFIS Engineering 3.0.67

www.hilti.com

Company:	Page:	11
Address:	Specifier:	
Phone Fax:	E-Mail:	
Design:	Date:	
Fastening point:		2/19/2021

Concrete - Feb 19, 2021

9 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.